Detecting bearish and bullish markets in financial time series using hierarchical hidden Markov models

Lennart Oelschläger

October 02, 2020

In a nutshell: Bearish and bullish markets

- $\left(X_{t}\right)_{t}$ - observed state-dependent process, $X_{t} \mid S_{t}=i \sim f_{i}$
- $\left(S_{t}\right)_{t}-$ state process, e.g. state space $=\{$ bullish, bearish, correction $\}$

What we are going to talk about?

Why hierarchical hidden Markov models for financial time series data?

How to estimate such models?

How to decode the hidden states?

Model results for the DAX

Model results for the Goldman Sachs Group stock

How to perform model checking?

What's next?

Why hierarchical hidden Markov models for financial time series data?
How to estimate such models?

How to decode the hidden states?

Model results for the DAX

Model results for the Goldman Sachs Group stock

How to perform model checking?

, successful results, leading to trading strategies that outperform e.g. buy-and-hold

- model does not capture short and long term trends jointly

What's next?

Why hierarchical hidden Markov models for financial time series data?

How to estimate such models?

How to decode the hidden states?

Model results for the DAX

Model results for the Goldman Sachs Group stock

How to perform model checking?

Maximum likelihood estimation

Likelihood of the i-th fine-scale hidden Markov model with the model parameters $\theta^{*(i)}=\left(\delta^{*(i)}, \Gamma^{*(i)},\left(f^{*(i, k)}\right)_{k}\right)$ on the t-th chunk $\left(X_{t, t^{*}}\right)_{t^{*}}$ of fine-scale observations

$$
\mathcal{L}^{H M M}\left(\theta^{*(i)} \mid\left(X_{t, t^{*}}^{*}\right)_{t^{*}}\right)=\sum_{S_{t, 1}^{*}, \ldots, S_{t, T^{*}}^{*}=1}^{N^{*}}\left(\prod_{t^{*}=1}^{T^{*}} f^{*\left(i, S_{t, t^{*}}^{*}\right)}\left(X_{t, t^{*}}^{*}\right)\right)\left(\delta_{t, 1}^{*(i)} \prod_{t^{*}=2}^{T^{*}} \gamma_{S_{t, t^{*}-1}^{*} S_{t, t^{*}}^{*}}^{*(i)}\right)
$$

Complexity: exponential

Maximum likelihood estimation

fine-scale forward probabilities

$$
\begin{gathered}
\alpha_{k, t^{*}}^{*(i)}=f^{*(i)}\left(X_{t, 1}^{*}, \ldots, X_{t, t^{*}}^{*}, S_{t, t^{*}}^{*}=k\right) \\
\mathcal{L}^{H M M}\left(\theta^{*(i)} \mid\left(X_{t, t^{*}}^{*}\right)_{t^{*}}\right)=\sum_{k=1}^{N^{*}} \alpha_{k, T^{*}}^{*(i)} \\
\alpha_{k, 1}^{*(i)}=\delta_{k}^{*(i)} f^{*(i, k)}\left(X_{t, 1}^{*}\right), \\
\alpha_{k, t^{*}}^{*(i)}=f^{*(i, k)}\left(X_{t, t^{*}}^{*}\right) \sum_{j=1}^{N^{*}} \gamma_{j k}^{*(i)} \alpha_{j, t^{*}-1}^{*(i)}, t^{*}=2, \ldots, T^{*}
\end{gathered}
$$

Complexity: linear

Problems in the numerical maximization

- parameter contraints \rightarrow bijective transformation
- numerical underflow \rightarrow logarithm
- local maxima \rightarrow repeated numerical search

What's next?

Why hierarchical hidden Markov models for financial time series data?

How to estimate such models?

How to decode the hidden states?

Model results for the DAX

Model results for the Goldman Sachs Group stock

How to perform model checking?

Viterbi algorithm

We are interested in

$$
\underset{S_{1}, \ldots, S_{T}}{\arg \max } f\left(S_{1}, \ldots, S_{T} \mid X_{1}, \ldots, X_{T}\right)=\underset{S_{1}, \ldots, S_{T}}{\arg \max } f\left(S_{1}, \ldots, S_{T}, X_{1}, \ldots, X_{T}\right),
$$

which we derive from

$$
\xi_{i, t}=\max _{S_{1}, \ldots, S_{t-1}} f\left(S_{1}, \ldots, S_{t-1}, S_{t}=i, X_{1}, \ldots, X_{t}\right)
$$

which can in turn be calculated recursively via

$$
\begin{aligned}
& \xi_{i, 1}=\delta_{i} f^{(i)}\left(X_{1}\right) \\
& \xi_{i, t}=\max _{j}\left(\xi_{j, t-1} \gamma_{j i}\right) f^{(i)}\left(X_{t}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
\hat{S}_{T} & =\underset{i}{\arg \max } \xi_{i, T}, \\
\hat{S}_{t} & =\underset{i}{\arg \max } \xi_{i, t} \gamma_{i \hat{S}_{t+1}} .
\end{aligned}
$$

What's next?

Why hierarchical hidden Markov models for financial time series data?

How to estimate such models?

How to decode the hidden states?

Model results for the DAX

Model results for the Goldman Sachs Group stock

How to perform model checking?
__ fine-scale state 1
fine-scale state 2

What's next?

Why hierarchical hidden Markov models for financial time series data?

How to estimate such models?

How to decode the hidden states?

Model results for the DAX

Model results for the Goldman Sachs Group stock

How to perform model checking?

Trade volumes

Decoded time series

Coarse-scale state 1

Coarse-scale state 2
Coarse-scale state 3

What's next?

Why hierarchical hidden Markov models for financial time series data?

How to estimate such models?

How to decode the hidden states?

Model results for the DAX

Model results for the Goldman Sachs Group stock

How to perform model checking?

Pseudo Residuals

X_{t} has (invertible) distribution function $F_{X_{t}} \Rightarrow Z_{t}=\Phi^{-1}\left(F_{X_{t}}\left(X_{t}\right)\right) \sim \mathcal{N}(0,1)$
Check:

- $Z_{t} \stackrel{a}{\sim} \mathcal{N}(0,1)$?
- $\operatorname{Cov}\left(Z_{t}, Z_{t+h}\right) \approx 0$?

Bootstrapping

André Kostolany (1906-1999)

«Think long-term. Prices rise or fall over months and years. There is no need to let yourself be driven crazy by short-term fluctuations.»

Thanks for your attention!

